Tetrahedron Letters No. 51, pp 5191 - 5194, 1972, Pergamon Press. Printed in Great Britain.

EVIDENCE FOR AN INTRAMOLECULAR [1,5]SHIFT OF A FORMYL GROUP IN THE THERMOLYSIS OF METHYL-[3,2,0]BICYCLOHEPT-2-EN-7-ONES

P. Schiess and P. Fünfschilling Institut für Organische Chemie, Universität Basel, Switzerland (Received in UK 31 October 1972; accepted for publication 15 November 1972)

We have prepared the four methyl-[3,2,0]bicyclohept-2-en-7-ones 2a, 2b, 2c and 2e through irradiation 1) of the appropriate methyl-[2,2,1]bicyclohept-5-en-2-ones <u>la</u>, <u>lb</u>, <u>lc</u> and <u>le</u>²⁾ in ether (table I). Vapour phase pyrolysis of compounds 2a - 2e in a flow system (11 torr, 1 s contact time) leads to a mixture of dihydrotolualdehydes $\underline{3}$ and $\underline{4}$ and their aromatization product $\underline{5}$. In addition a small amount of the respective methyl-[2,2,1]bicyclohept-5-en-2-ones 1 is formed (table II). No fragmentation to ketene and methylcyclopentadiene is observed $^{3)}$.

<u>Table I</u> Methyl-[3,2,0]bicyclohept-2-e	n-7-ones <u>2</u>	CH ₃ b O 2	$A_{c} 0$	
	<u>2a</u>	<u>2b</u>	<u>2c</u>	<u>2e</u> a)
UV (C ₂ H ₅ OH): λ_{max} (nm, ε) IR (film): $\mathcal{V}_{C=0}$ (cm ⁻¹)	302 (290) 1777	302 (310) 1777	301 (340) 1780	1780
NMR (CCl ₄): δ methyl-H bridgehead-H vinyl-H	1,23 s - 5,45 m 5,76 m	1,75 d/1,5 3,98 s br 5,40 s br	1,81 d/1,5 4,14 s br 5,22 s br	l,40 s 3,70 m 5,45 m 5,60 m

a) isolated only as a mixture with 1c and 1e

As with the unsubstituted [3,2,0] bicyclohept-2-en-7-one $(2, H \text{ instead of CH}_3)$ the conversion of 2 to 3, 4 and 5 is proposed as proceeding through intermediates 6, 7 and 8 (rf. chart I) 3). The formation of 8 involves in sequence a [2+2]cycloreversion (step A), an intramolecular [1,5]H-shift and an electrocyclic ring closure. Unconjugated aldehydes of structure 8 which were never isolated from the pyrolysis mixtures, should lead readily to 3, 4 and 5 through $[1,5]^{H}$ -shift, enolization $^{4)}$ and aromatization respectively. The formation of <u>1</u> is thought to

involve a competing primary step of $\underline{2}$ (step B in chart I) proceeding through a biradical intermediate. With the exception of enolization and possibly aromatization all reaction steps discussed are presumed to be uncatalysed thermal processes ⁵⁾.

Pyrolysis of $\underline{2c}$ and $\underline{2e}$ (rf. table II) leads almost exclusively to aldehydes $\underline{3, 4}$ and $\underline{5}$ bearing the methyl group at the position predicted by the proposed reaction course (chart I). A minor amount of additional aldehydes ($\underline{3e}$ and $\underline{4e}$ from $\underline{2c}; \underline{3c}$ and $\underline{4c}$ from $\underline{2e}$) could have been formed through a sequence of [1,5]H-shifts starting from intermediates $\underline{3}$ or $\underline{8}$.

In the product obtained from $\underline{2a}$ no unconjugated aldehyde $\underline{8a}$ could be detected. Instead a mixture of similar composition was obtained as with $\underline{2c}$ and $\underline{2e}$. We therefore have to assume that intermediate $\underline{8a}$ reacts through a [1,5]shift of either the methyl group to $\underline{3e}$ or the formyl group to $\underline{8e}$ (chart II). The aldehydes isolated could result from both $\underline{3e}$ or $\underline{8e}$ through a combination of [1,5]H-shift, enolization and aromatization processes.

In the mixture from pyrolysis of <u>2b</u> the expected ortho-aldehydes <u>3b</u>, <u>4b</u> and <u>5b</u> are formed in addition to para-aldehydes <u>3d</u>, <u>4d</u> and <u>5d</u>. The ratio of ortho- to para-products ($N_{ortho/para}$) is found to depend on the pyrolysis temperature: At 375° ortho-aldehydes prevail ($N_{ortho/para} = 4$). At 465° more of the para-aldehydes are formed ($N_{ortho/para} = 0.5$). This temperature dependence of product composition can be interpreted as a result of kinetic vs. thermodynamic control in the product forming steps: At lower temperature labile intermediate <u>8b</u> leads to ortho-aldehydes mainly through <u>3b</u> formed by a reversible [1,5]H-shift. At higher temperature <u>8b</u> reacts through a [1,5]shift of the formyl group leading to <u>8d</u> and from there to more stable para-products <u>3d</u>, <u>4d</u> and <u>5d</u> (path A in chart III).

No.	51

Table II

Products from vapour phase pyrolysis of methyl-[3,2,0]bicyclohept-2-en-7-ones 2 a)b)

	mperature °C	CH3 CH3 CH0 d f <u>3</u>				CH3 b CHO						CH3 b Ac o a 1		her prod. ^{c)}			
	е Н	00	b	<u>c</u> e) <u>d</u>	<u>e</u>	£	b	<u>c</u>	<u>d</u>	e	b	<u>c</u>	<u>d</u>	CH3	at:	oti
<u>2a</u> d)	450	98	-	8	-	4	-	-	-	-	12	-	56		<u>a</u> :	10	8
<u>2b</u>	420	95	11	-	24	~	2	6	-	9	-	17		9	<u>b</u> :	7	9
<u>2c</u>	450	97	-	17	-	2	-	-	3	-	2		45	-	ः	11	17
<u>2e</u>	420	f)	~	2		18	-	-	2	-	30	-	28	-	<u>e</u> :	f)	20

a) All compounds in this table have been identified, except where indicated, by comparison with samples prepared independently or by IR-, UV- and NMR-spectra. The structure of aldehydes has been verified by aromatisation with choranil.

 b) Percentage of components in recovered pyrolysis product, as determined by capillary vpc, is given (recovery 80 - 90%).

c) Benzaldehyde, toluene and compounds of undetermined structure.

- d) At lower temperature up to 5 % of ketone 2c is formed from 2a.
- e) Tentative structural assignment.
- f) Ketone <u>2e</u> was contaminated with <u>le</u>; percentage of products other than <u>le</u> and <u>2e</u> is given for this run.

CHART II

Aldehyde <u>3f</u>, a minor pyrolysis product of <u>2b</u>, must have been formed from <u>3b</u> or <u>3b</u> through a sequence of thermal [1,5]H-shifts. It is conceivable that ortho-para rearrangement could have occurred from <u>3f</u> through a [1,5]shift of the methyl group (path B in chart III) or through a series of steps involving a [1,7]H-shift in open chain intermediates <u>9</u> and <u>10</u>⁶⁾ (path C in chart III). Indeed it was found that <u>3f</u>⁷⁾ leads to rearranged para-products <u>3d</u>, <u>4d</u> and <u>5d</u> if pyrolyzed above 500°. However, at a temperature of 420°, at which ketone <u>2b</u> was submitted to pyrolysis, no rearrangement of <u>3f</u> is observed ! Ortho-para rearrangement therefore must occur

from an intermediate which ist formed faster from $\underline{2b}$ than from $\underline{3f}$. This intermediate can only have structure $\underline{8b}$! From this we conclude that the rearrangement of the carbon skeleton observed to occur upon pyrolysis of $\underline{2a}$ and $\underline{2b}$ as well as of $\underline{3f}$ at higher temperature involves an intramolecular [1,5]shift of a formyl group and not a [1,5]methyl shift or a [1,7]H-shift in an open chain intermediate $\overset{6)}{}$. - Certain reports in the literature $\overset{8)}{}$ can be interpreted as involving similar thermal formyl migrations.

Support of this investigation by the "Schweizerischer Nationalfonds" (project Nr. 2.396.70) and by CIBA-GEIGY Corporation is gratefully acknowledged.

FOOTNOTES

- 1) D.I. Schuster, M. Axelrod and J. Auerbach, Tetrahedron Letters 1963, 1911.
- 2) S.E. Masar and H. Krieger, Suomen Kem. 42, 1 (1969).
- 3) P.W. Schiess and M. Wisson, Tetrahedron Letters 1971, 2389.
- 4) This could be a surface catalyzed process (rf. W.E. Erman, R.S. Treptow, P. Bakuzis and E. Wenkert, J. Amer. Chem. Soc. <u>83</u>, 657 (1971), footnote 29).
- 5) A kinetic study of the gas phase thermolysis of ketone <u>2a</u> has been carried out: A.T. Cooks and K.W. Egger, J. Chem. Soc. Perkin II, to be published. Using a pyrex or a teflon coated stainless steel reaction vessel these authors find the same pyrolysis products, except aldehyde <u>4e</u>, as we do in our flow system. This indicates that the process leading to <u>4e</u> is subject to surface catalysis.
- 6) Such a reaction course has been proposed for the thermal rearrangement of 5,5-dimethyl-1,3-cyclohexadiene: H. Pines and R.H. Kozlowski, J. Amer. Chem. Soc. <u>78</u>, 3776 (1958); H. Pines and C.T. Chen, ibid. <u>81</u>, 928 (1959).
- 7) C. Grundmann, Chem. Ber. <u>81</u>, 513 (1948).
- 8) J.J. Beereboom, J. Org. Chem. <u>30</u>, 4230 (1965); P.Y. Blanc, Helv. Chim. Acta <u>41</u>, 625 (1958).