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We have prepared the four methyl-[3,2,0]bicyclohept-2-en-7-ones 2, &, & 

and & through irradiation 1) of the appropriate methyl-[2,2,l]bicyclohept-5-en- 

2-ones &a, $&, & and J& 2) in ether (table I). Vapour phase pyrolysis of 

compounds a - 2 in a flow system (11 torr, 1 s contact time) leads to a mixture 

of dihydrotolualdehydes 2 and 3 and their aromatization product 2. In addition a 

small amount of the respective methyl-[2,2,1]bicyclohept-5-en-2-ones 1 is formed 

(table II). No fragmentation to ketene and methylcyclopentadiene is observed 3) . 

I Table 

Methyl-[3,2,0]bicyclohept-2-en-7-ones 2 

uv (c~H~~H) : h m* (m, 6) 

IH (film): L)Czo (cm 
-1 

1 

NMR (CCl4): & methyl-H 

bridgehead-H 

vinyl-H 

302 (290) 

1777 

1,23 s 

5,45 m 

5,76 m 

302 (310) 

1777 

1,75 d/l,5 

3,98 s br 

5,40 s br 

301 (340) 

1780 

1,81 d/1,5 

4,14 s br 

5,22 s br 

252 a) 

1780 

1,40 s 

3,70 m 

5,45 m 

5,60 m 

a) isolated only as a mixture with & and & 

As with the unsubstituted [3,2,0]bicyclohept-2-en-7-one (2, H instead of CH3) 

the conversion of 2 to 3, _ 4 and 2 is proposed as proceeding through intermediates 

5, 1 and @ (rf. chart I) 3). The formation of 8 involves in sequence a [2+2]cyclo- 

reversion (step A), an intramolecular [1,5]H-shift and an electrocyclic ring 

closllre. Unconjugated aldehydes of structure 8 which were never isolated from the 

pyrolysis mixtures, should lead readily to 2, 3 and 5 through [l,S]H-shift, 

enolization 4, and aromatization respectively. The formation of 1 is thought to 
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e 

f 
CH2 c 

s':, 

involve a competing primary step 

biradical intermediate. With the 

all reaction steps discussed are 

Pyrolysis of. 2c and 2e (rf. - - 

e 
-a 

of 2 (step B in chart I) proceeding through a 

exception of enolization and possibly aromatization 

presumed to be uncatalysed thermal processes 5) . 

table II) leads almost exclusively to aldehydes 

3, 3 and 5_ bearing the methyl group at the position predicted by the proposed 

reaction course (chart I). A minor amount of additional aldehydes (& and & from 

2c; & and & from &) could have been formed through a sequence of [1,5]H-shifts 

starting from intermediates 2 or 8. 

In the product obtained from & no unconjugated aldehyde & could be detected. 

Instead a mixture of similar composition was obtained as with 2 and a. We there- 

fore have to assume that intermediate aa reacts through a [1,5]shift of either 

the methyl group to 2 or the formyl group to & (chart II). The aldehydes isolated 

could result from both 3e or & through a combination of [l,S]H-shift, enolization - 
and aromatization processes. 

In the mixture from pyrolysis of Lh, the expected ortho-aldehydes 3b, Q and 

5& are formed in addition to para-aldehydes 3d, B and x. The ratio of ortho- to 

para-products (Northo/para) is found to depend on the pyrolysis temperature: At 

315O ortho-aldehydes prevail (Northo,para = 4). At 465O more of the para-aldehydes 

are formed (N ortho/para = 0.5). This temperature dependence of product composition 

can be interpreted as a result of kinetic vs. thermodynamic control in the product 

forming steps : At lower temperature labile intermediate 8_b leads to ortho-aldehydes 

mainly through 2 formed by a reversible [11,5]H-shift. At higher temperature 8b. 

reacts through a [1,5]shift of the formyl group leading to &$ and from there to 

more stable para-products 3d 4d and 2 (path A in chart III). -7 - 
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from an intermediate which ist formed faster from 3 than from 3f. This intermediate 

can only have structure @& ! From this we conclude that the rearrangement of the 

carbon skeleton observed to occur upon pyrolysis of & and 2 as well as of 3f at 

higher temperature involves an intramolecular [1,5]shift of a formyl group and 

not a [1,5]methyl shift or a [1,7]H-shift in an open chain intermediate 6) . - Cer- 

tain reports in the literature 8) can be interpreted as involving similar thermal 

formyl migrations. 
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